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Abstract

This report describes the result of our lab course about the magneto optic trap (MOT).
We first describe the theory of this experiment and then explain the experimental setup
as well as the results that we obtained. We were able to record a high resolution spectrum
of the rubidium D2-line, that was used to cool down and trap rubidium atoms ( 85Rb).
We then characterized our MOT, were able to optimize the number of trapped atoms
and measured the dependence of the number of trapped atoms and the loading rate on
external parameters. Finally we will discuss different models for the trap that allow us to
estimate the temperature of the atomic cloud, including a simulational approach.
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1 Cooling the Atoms

Cooling atoms means that we want to decrease the momentum of the atoms. This requires a
velocity dependent dissipative force.

If an atom absorbs a photon it will change its momentum by ∆~p = ~~k. Now the atom
can relax either by stimulated or by spontaneous emission of a photon.In case of stimulated
emission, the atom emits a photon with ~kre = ~klaser which has the same direction as the photon
from the laser field and therefore the overall momentum transfer to the atom is zero. In case of
spontaneous emission the photons are reemited isotropic and the mean value of the momentum
of the reemited photon < pre > is zero. This results in an overall momentum transfer to the
atom ~peff = ~~k.

Since we want to cool the atoms we have to make sure that only those atoms that are
propagating in the opposite direction of the laser beam absorb photons. This can be done by
using the Doppler effect. For an atom which is moving towards the laser-beam the photons are
blue detuned, and in the other case red detuned. Assume that a still atom is resonant on a
certain frequency ωres. If you red detune the laser to ωlaser = ωres + δ, then atoms which are
moving towards the laser with ~vatom ·~klaser = δ will be resonant. The resulting force which acts
on an atom can be written as:

~F (~v) = ~~k
Γ

2

I/I0

1 + I/I0 +
(

2(δ−~k~v)
Γ

)2 (1)

I, laser intensity; I0, saturation intensity
δ = ωlaser − ωres, detuning of the laser
~k, the wave vector;
Γ, decay rate of the exited state

If we plug v = 0 in (1) we see that the force on zero-velocity atoms is not zero. To
compensate this we use three orthogonal pairs of counter propagating laser beams (with red
detuning δ < 0), which is also known as an optical melasse. For the sake of simplicity we
will only discuss the onedimensional case. For small laser intensities (I/I0 << 1) we get with
equation (1):
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If we do a Taylor expansion of F (v) around v = 0 we get:

F (v) = 0 · v0 +
8~k2δ 1

Γ
I
I0(

1 + 4δ2

Γ2

)2 · v + 0 · v2 + O(v3) '
δ<0
−αv (4)

According to this model the velocity would decrease exponentially to zero. But this model does
not include the discrete absorption and emission process. If we take this into account we get
the Doppler limit (the lowest temperature reachable):

TDoppler =
~Γ

2kB

(5)
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Figure 1: Light force depending on atom’s velocity for δ = −Γ
2

2 Trapping the Atoms

According to the optical Earnshaw theorem [Phillips 1992, p. 321] the optical melasse does
not implement a trap. Even if they are in the cross-over point of the laser beam, the atoms
will diffuse out of the cooling area. Therefore we need an additional restoring force which
depends on the atom’s position. One possible solution is the magneto optical trap (MOT). To
keep things simple we will consider a two level system with a transition (F = 0 → F = 1).
Additionally we introduce a 1-dim. linear magnetic field (along the z axis) with B = 0 at z = 0.
Due to the Zeeman effect we get a energy splitting of the three degenerated energy levels of
the F=1 state, which depends on the atom’s position (see fig. 2).
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Figure 2: a) Transition scheme; b) Energy levels in the spatially varying filed; the dashed line is
the energy of the laser-photons

Without loss of generality we can choose the magnetic field so that the m = −1 level is
lowered for increasing z, and the other way around for m = −1. Now we add two counter
propagating laser beams in z-direction. The beam which propagates in positive z-direction has
a σ+ helicity with respect to the atom and the other beam a σ− helicity, this means that both
beams have the same polarization (see fig. 3). The laser is detuned by δ from the resonance
of the transition (fig. 2). Due to the Zeeman splitting and the red detuning of the laser the
probability for a atom at z < 0 to absorb σ+ photon is much higher than the probability to
absorb a σ− photon, and therefore the atom feels a force which brings it back to z = 0. As
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total force on the atoms we get [Phillips 1992, p. 323]:

F (v, z) = Fσ+ + Fσ− =
~kΓ

2

(
I/I0

1 + 4
(

δ−kv−βz
Γ

)2 − I/I0

1 + 4
(

δ+kv+βz
Γ

)2
)

(6)

In the limit of small v and z we get:

F (v, z) =
2~k(2I/I0)(2δ/Γ)[kv + βz]

(1 + (2δ/Γ)2)2
(7)

This can be written as:
z̈ + γż + ω2

trapz = 0 (8)

which is the equation of a damped harmonic oscillator. This shows that we can cool (dissipative
part) and trap (harmonic potential) the atoms.

3 The Rubidium Atoms
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Figure 4: fine and hyperfine structure of the 85Rb
D-line [Mot 2004]

(which is also found in the lab) is 72%
of 85Rb and 28% of 87Rb. In our experi-
ment we will use the 5s ↔ 5p transitions
(D-line) of 85Rb (see fig. 4). The transi-
tion which is used for cooling is 5S1/2, F =
3↔ 5P3/2, F = 4. Since this is not a sim-
ple two level system, there is a small but
existing probability for the transition form
5P3/2, F = 4 to 5S1/2, F = 2 (this happens
in about 1 in 1000 cycles). If the atom
is in the 5S1/2, F = 2 state (dark state),
it does not interact with the cooling laser
anymore. But since the transition rate for
5S1/2, F = 3 ↔ 5P3/2, F = 4 is quite big,
we would loose all atoms after a short period and a permanant trap would not be possible.
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The solution is a second laser which pumps from 5S1/2, F = 2 to 5P3/2, F = 3. From there the
atoms can get back to the 5P3/2, F = 4 state, which closes the cycle.

4 Doppler-free saturation spectroscopy

At room temperature the width of atomic resonances is dominated by the Doppler effect. The
Doppler broadening of a spectral line can be calculated as [Haken 2000, p. 302]:

∆ωD =
ω0

c

√
8kBT · ln 2

m0

(9)

For the 85Rb D-Lines at room temperature we get (ω0 = 2.41 · 1015s−1, m0 = 1.411 · 10−25kg,
T = 300K) ∆ωD = 3.247 · 109s−1. Comparing this to the natural linewidth 2πΓ ≈ 3.8 · 107s−1

we see that the Doppler broadening at room temperature is two orders of magnitude bigger.
To see single resonance peaks we have to limit spectroscopy to one velocity. This can be
done by the method of Doppler-free saturation spectroscopy. For this setup we use two
counterproparating laser-beams. A ”pump beam” with a high intensity is transmitted through
an atomic vapour cell, to pump the atoms into higher energy levels. From the opposite direction
we sent a ”probe beam” with exactly equal beam path and frequency, but with lower intensity
(≈ 1/10 of the ”pump beam”), and record its absorbtion in the atomic vapour cell (spectroscopy
signal).

Now let’s consider a simple two level system with a ground state |g〉 and an exited state
|e〉 and a resonance frequency ω0. If we shine in light with frequency ω0 the pump beam will
excite atoms with v ' 0 into state |e〉, while atoms with v 6= 0 will out of resonance due to
the Doppler effect. Now the ”probe beam” sees nearly no atoms in |g〉 and therefore it is only
weakly absorbed. But if we red detune the laser frequency from ω0 to ω = ω0 − δ, the ”pump
beam” will be in resonance with atoms that move towards it (v > 0) and the ”probe beam” will
address atoms with v < 0 which are not excited, and therefore it will be absorbed. Respectively
for blue-detuned light. According to the above, we will get an intensity peak at the resonance
frequency (lamb dip) (see fig.4) and therefore it is possible to gain a resolution which is not
depending on the Doppler broadening of a spectral line.

The situation get’s a little bit more complicated if we have multilevel atoms e.g. let’s
consider a system with one ground state |g〉 and two exited states |e1〉 and |e2〉, transition
frequencies ω1 = ω(|g〉 → |e1〉) and ω2 = ω(|g〉 → |e2〉) with ω1 < ω2 and ω2 − ω1 smaller than
the doppler broadening. Now if we detune our laser to ω̃ = ω1+ω2

2
then we will see an extra

resonance peak between the two resonance peaks, the so called cross over peak. This can be
understood if we consider atoms which are moving away form the ”pump-beam” with v < 0
so that the ”pump” is resonant with the ω1 transition, but for the same atoms the ”probe” is
resonant with the ω2 transition, because:

ω1 = ω̃ − kv (10)

⇒ kv = ω̃ − ω1 (11)

and the same atoms see the probe with ω′:

ω′ = ω̃ + kv (12)

⇒
(11)

ω′ = ω̃ + ω̃ − ω1 (13)

⇒
ω̃=(ω1+ω2)/2

ω′ = ω2 (14)

The ”pump-beam” pumps nearly all atoms in the |e1〉 state, but this leads to a reduction
of the population density of the groud state |g〉, which makes the atoms ”transparent” for the
”probe-beam”, and therfore we see a cross-over peak.
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Figure 5: Absorbtion line with lamb dip.

5 Experimental Setup

In this chapter we will explain the experimental realisation of the theoretical concepts and the
results obtained with this setup. There are two major parts in the experiments. First we took
a spectrum of the rubidium (Rb) D2-line that is used to cool the atoms. Then we implemented
a magneto optical trap (MOT). We then characterized our MOT and tried to find dependencies
of its controllable parameters.

5.1 Lasers and Laser Lock

To implement a MOT you need lasers that are stabilised precisely to a specific frequency
(accuracy ≈ some MHz), that has to be detunable. So we need lasers with tunable frequency,
to make electronic stabilisation of the frequency possible.

In this lab we used two lasers, named COCO and ROY. ROY was used to cool the atoms
down, i.e. to produce the three counter propagating beams (frequency: slightly detuned from
F = 3→ 4 line). COCO is used to repump the atoms from the dark ground state (F = 2→ 4
line). Both have the same internal setup. They are diode lasers with a tunable external cavity.
It is possible to tune the frequency of a diode laser, as these lasers do not emit a single line, but
a narrow continuum of frequencies. Fig. 6 shows the basic setup of these lasers. They use a
Littrow diffraction grating. In this configuration the first order is reflected back into the diode
and the zeroth order can be used for the experiment. By changing the position of the grating
(using a piezo element), it is possible to change the external cavity that is formed between
the grating and the laser diode itself. This of course changes the wavelength of the laser. In

Laser
diode

to experiment

Littrow grating

piezo element

0th order

1st order

laser diode / collimator

Littrow grating

piezo

peltier element

Figure 6: basic setup for a tunable diode laser with a Littrow grating (left); photograph of the
laser (right)
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addition it is essential to stabilise the temperature and the current through the laser diode, as
these two factors also change the wavelength and output power of the diode laser. The first
task is done by using a peltier element and a temperature dependent resistor (NTC). The latter
one has to be done electronically.

As we have already seen, the lasers have to be locked to a specific hyperfine line within
the Rb-D2 line. Here this is done by adding two spectroscopy setups to the lasers. We used
Doppler-free saturation spectroscopy, that is described in 4 and 5.3. From these, an error
signal that reflects the detuning from the spectral line has to be derived. The derivative of the
spectroscopy signal is a good choice, as it shows a zero crossing if the laser frequency passes a
peak. So we can use PI-regulators to stabilize the frequency of the lasers.

The stabilisation appeared to be quite resistant to disturbance. This is especially true for
ROY. We lost laser lock only once or twice a day, while COCO lost its lock in about every
hour. By clapping in the hands we could disturb the lasers i.e. they were forcibly detuned.
Both lasers returned reliably to their lock positions.

Fig. 7 shows the complete optical setup in the lab. The two linearly polarised laser beams
(cooler and repumper) are combined in a beam splitter. The resultant beam is widened, using
a telescope. Two half-waveplates and two polarising beam splitters are used to create three
linearly polarised laser beams with changeable intensity. They are then circularly polarized
and sent into the vacuum chamber, where they cross to form the MOT. All three beams have
to have in about the same intensity, which can be varied by turning the half waveplates.

ROY
(cooler)

COCO
(repumper)

spectroscopy

spectroscopy
w

ith detuning coil

telescope to widen beam

l/2 waveplate
polarising 
beam splitter

l/4
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3-dimensional crossing 
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l/4
l/4

l/4

PBS

BS

(a) (b)

MOT

to
vacuum pump

and Rb-dispenser

mirrors/
l/4 waveplates

vacuum chamber

Figure 7: (a) complete optical setup, including vacuum chamber and spectroscopy (b) setup of
the vacuum chamber

The polarisation of the beams leaving the vacuum chamber is changed to linear again, before
they are reflected and sent back. With this setup the circular polarisation does not change, i.e.
if the beam has σ+ polarisation, the counter propagating also has σ+ polarisation. This leads
to σ±-helicity of the beams, as mentioned before.

5.2 Mechanical Setup and Vacuum

The MOT itself is formed within a vacuum chamber that is kept at approximately 5 ·10−9mbar.
The chamber is equipped with several glass windows that are used for the laser beams and to
observe the MOT. There are also Rb-dispensers. The pressure is kept low by continuous
pumping.

The two Helmholtz coils (actually they are in anti-Helmholtz configuration) are placed
outside the vacuum chamber and attached to a constant current supply.
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Figure 8: photograph of the experimental setup showing the vacuum chamber and optical ele-
ments for the laser beams

There is a small CCD-camera which is sensitive in the near IR spectrum and can there-
fore be used to image the trapped atom directly, as they show fluorescence while the laser is
resonant to their D2-line. We were also able to record some small videos of the experiment,
using this camera. Additionally the setup contains a photodiode with a precision current-to-
voltage converter/amplifier which allowed us to measure precisely the power that is emitted
over fluorescence by the atoms in the trap.

5.3 Spectroscopy Setup

Fig.9 shows the experimental setup for the Doppler-free saturation spectroscopy that is ex-
plained in 4. A small fraction of the laser light coming from COCO or ROY (pump beam) is
sent through a gass cell that contains Rb vapour. The cell is heated to increase the vapour
pressure. Behind the cell there is a mirror that reflects the beam back (probe beam). Then the
beam is split again and sent to two photodiodes. One is a standard version that records the
spectroscopy signal. The second one is an avalanche photodiode with acompanying electronics
that generates a signal that is proportional to the derivative of the spectroscopy signal itself.

For the cooling laser there is also a detuning coil and a λ/4-waveplate. This allows us to
change the position of the spectral lines of the Rb atoms due to the Zeeman effect. This is
needed to allow a laser lock on a shifted spectral line, as it is needed for our experiment.

LASER (ROY/COCO)

optical
diode

to MOT avalanche photo diode

Rb vapour cell (heated)
with detuning coil for ROY

beam splitter 
(glass)

beam splitter 
(glass)

l/4 waveplate for ROY

standard photo diode

Figure 9: experimental setup for the Doppler-free saturation spectroscopy
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6 Experimental Results

6.1 Rb-spectroscopy

We scanned over the complete D2 line of 85Rb and 87Rb (see fig. 18 for the theoretical
spectrum) using the laser named ROY, which is used to cool the atoms in the MOT.
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Figure 10: Rb-spectrum, taken with COCO. The upper (red) curve shows the spectroscopy
signal. The lower (green) curve shows its derivative. The blue numbers mark the single lines.
The lines for the cooling and the repumping laser of the MOT are marked also.
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As it is impossible to tune the laser over the complete frequency interval, needed to record
the complete line structure, we took several smaller scans that had to be combined to show
the complete spectrum. Fig 10 shows our results. A complete scan is not possible, as the
laser produces mode-jumps, i.e. new modes start to appear in the laser-cavity, that do not
have the desired frequency. Some of the lines may be seen as peaks in the spectroscopy signal
itself. But as one can see from our results there are more lines that can be found in the
derivative of this signal. The position of the lines is slightly shifted to the right, when we
compare the spectroscopy signal and its derivative. This may be explained by a retardation in
the measurement electronics. The lines in fig. 10 are plotted according to the derivative.

The spectrum in fig. 10 shows both, the normal lines and the cross-over peaks that are
created by our spectroscopy-method (see 4). To transform a line’s position (measured in mm)
into a frequency, we calculated a calibration factor α, using the known distance ∆ν = 78.47MHz
between the two big cross-over peaks of the 87Rb(F = 2→ F ′) group of lines (see fig18). From
fig. 10 one gets a factor of:

α =
78.47 MHz

(2.5± 0.8) mm
= (31.4± 8.8)

MHz

mm

The error is quite large, which depicts the uncertainty in adding the single scans together. Using
this factor we could determine relative distances for all the lines within the 85Rb and 87Rb
spectrum. When measuring the distances in fig. 10, we estimated an error of about 0.7 mm in
their position, which is mainly given by the finite frequency resolution. Our results are shown
and compared to the theoretical expectation in tab. 1 and 2. The spectrum shows a slow rise
from left to the right. This can be explained by an increase in laser power while detuning the
resonator. All measure lines are as expected theoretically within 1σ.

] dist. to 0 [ mm] dist. to 0 [ MHz] line group line theoretical distance [ MHz]
1 (6.6± 1.0) (207± 66) 87Rb(F = 2→ F ′) F ′ = 1 211.8
2 (4.1± 1.0) (128± 47) 1→2 co 133.33
3 (1.6± 1.0) (50± 34) F ′ = 2 54.85
4 (2.5± 0.8) 78.47 (exact) 2→3 co —
5 (6.5± 1.0) (204± 65) F ′ = 3 211.8
13 (194.2± 1.0) (6097± 1709) 87Rb(F = 1→ F ′) distance of this group of lines
14 (197.5± 1.0) (6201± 1738) is about 6834.682 MHz

Table 1: The spectral lines measured in the 87Rb-spectrum. The distances give the frequency
distance to the line marked as 0. The theoretical data is taken from [Steck 2005]. ’co’ stands
for crossover line.

] dist. to 9 [ mm] dist. to 9 [ MHz] line group line theoretical distance [ MHz]
6 (4.9± 1.0) (168± 55) 85Rb(F = 3→ F ′) 3→ 2 co 152.5
7 (3.0± 1.0) (103± 43) 4→ 2 co 92
8 (1.9± 1.0) (65± 38) 4→ 3 co 60.5
9 0 0 F ′ = 4 —
10 (90.9± 1.0) (3126± 800) 85Rb(F = 2→ F ′) distance of this group of lines
11 (92.1± 1.0) (3168± 811) is about 3036 MHz
12 (93.7± 1.0) (3223± 825)

Table 2: The spectral lines measured in the 85Rb-spectrum. The distances give the frequency
distance to the line marked as 9. The theoretical data is taken from [Kemmann 2001]. ’co’
stands for crossover line.

We could also extract the line widths (FWHM) from fig. 10. First we measure the Doppler-
broadened line widths (see tab. 3). From these one gets an estimate for the temperature
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of the Rb-vapour in the spectroscopy cell. From theoretical considerations one gets for the
Doppler-broadening ∆ωD:

∆ωD =
ω

c

√
8kBT · ln 2

m
⇒ T =

m · (λD2 ·∆νD)2

8kB · ln 2
(15)

With (15) we calculated the temperature of the Rb-vapour. The results are shown in tab. 3.
With this method we measured a temperature of about (400± 140) K. This can be explained,
as the rubidium cell is being heated to raise the rubidium vapour pressure in it.

(a) (b)

line width ∆νD [MHz] Temperature T [K]
87Rb(F = 2→ F ′) (587± 139) (395± 132)
85Rb(F = 3→ F ′) (606± 172) (411± 165)

line width [ MHz]
0 (41± 22)
4 (45± 23)
5 (48± 23)
9 (27± 20)

Table 3: Doppler-broadened (a) and Doppler-free (b) line widths and the temperature of the
Rb-vapour, that was derived from them.

We could also estimate the Doppler-free width for some lines. The results are also shown
in tab. 3. The natural line width would be (ΓD2 is the decay rate of the excited Rb-D2 state):

∆ν =
ΓD2

2π
≈ 6 MHz (16)

The measured lines are still broader than the theoretical minimum width, but they are about
one order of magnitude smaller than the Doppler-broadened spectral lines.

6.2 Implementing the MOT and Basic Characterisation

6.2.1 Implementing the MOT

The next task in the lab course was to implement the magneto-optical trap itself. To do this
we had to align the beams within the chamber in a way that maximizes then overlap region. In
this region the MOT will form. This task did not cause severe problems, so we could establish
the trap on the first of three days in the lab. The alignment of the λ/4 waveplates is not critical
either. The light just has to be in about circularly polarized a slight elliptical polarization does
not show any large effect.

On the second day we could further optimize our settings, by measuring the fluorescent light
from the trapped atoms and aligning the setup accordingly. Fig. 11 shows some photographs
of our MOT. You can recognize the three laser beams and the bright (white) atomic cloud in
the region where they cross.

Figure 11: Pictures of atoms in our MOT, taken using a CCD camera. The red lines mark the
atomic cloud.
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6.2.2 Number of Atoms

To measure the fluorescent light we used the photodiode, mentioned in 5.2. As the size of
this photodiode, its spectral response and distance to the trapped atoms is known we could
calculate the overall power of the emitted fluorescence light, which enables us to measure the
number of atoms in the trap. To estimate the number of atoms, we assumed that one photon
of energy hνD2 = hc

λD2
is emitted every lifetime τ = 2π

ΓD2
of the excited Rb-state by half of the

atoms (number of atoms: N , at the maximum, N/2 atoms are in the excited state). This gives
us:

N =
Pdetected · τ

hν
·

2 · r2
app

r2
detector

(17)

where rapp = (10 ± 2) cm is the distance between the trapped atoms and the photodiode and

rdetector = (3.5 ± 1) mm is the radius of the circular photodiode. The factor
4·r2

app

r2
detector

calculates

the fraction of light that is emitted into the photodiode. Using (17) we calculated that our trap
contained a maximum of about 106 atoms.

It does not make sense to estimate the error using Gaussian error propagation, as we do
not have good estimates for the errors of our measured variables. We believe the error is at
least about 30%. This is the relative error that is obtained soleily from the uncertainty in the

geometric factor
4·r2

app

r2
detector

.

With (17) we estimated about 5 · 105 trapped atoms.

6.3 Loading Rate Measurement

To model the loading behaviour of the trap we
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Figure 12: example recording from
loading rate measurement

assumed that it has a constant loading rate γ and
a loss that is proportional to the number of atoms
−β · N (see [Stuhler 2001]). This gives a differential
equation:

dN

dt
= γ − β ·N (18)

The solution of this equation is simply

N(t) = N0 · (1− e−t/τ ), with τ =
1

β
(19)

which means that N(t) approaches a global maxi-
mum, where the flows to and from the trap are equal (t � 0 ⇒ γ = β). The constant
loading rate is then:

γ = N0 · β =
N0

τ
(20)

To actually measure τ , we recorded the fluorescent light while the trap was loading up. This
gave us curves, as the one shown in fig. 12. We used GnuPlot to fit a function, like (19) to the
data. From this fit we took τ . We could also determine the background intensity (proportional
to Ulow) with no lasers on, i.e. no fluorescence and the intensity, when the trap is full. From
the latter one we could calculate the number of atoms in the trap (see equation (17)).

There are several parameters in this experiment that can influence the loading rate as well
as the number of atoms. We picked out two of them. We choose the Detuning of the cooling
laser (ROY) and the magnetic field, i.e. the current through the Helmholtz coils (I ∝ B), as
these seemed crucial and are relatively easy to measure.

The results, obtained when varying the magnetic field are shown in fig.13. The number
of atoms seems to increase linearly with the magnetic field. The same seems to be true for
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the loading rate γ. The loss rate β seems to reach a constant level for high magnetic fields.
These results can be understood if we take into account that the strength of the magnetic
field determines the height Φmax of the trap potential. Atoms may be trapped if their energy
Ekin = p2/2m is below the trap potential, i.e. a raising magnetic field increases the fraction of
atoms that may be trapped.

Atoms may always leave the trap, if they get an additional impulse from external hot atoms.
If the magnetic field and therefore Φmax increases, it is getting more and more unlikely that an
atom’s kinetic energy after a stroke is big enough to cross Φmax. This explains the decrease of
the loss rate β. There is a constant bias, that the loss rate decreases to. This could be explained
by higher order effects, like strokes between excited atoms. A second explanation could be a
decreased cooling rate in the center of the trap (that gets smaller for higher magnetic fields) as
the atomic cloud has a non-vanishing optical density.

The errors of N (number of atoms) is assumed as 30% (see 6.2.2). The errors of β and γ
result from gaussian error propagation. The error of τ , was taken from GnuPlot.
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Figure 13: number of atoms N , loading rate γ and loss rate β versus current through the pair
of Helmholtz coils

We also measured the loading rate in dependence of the detuning ∆ν of the cooling laser.
The detuning is created by a coil around the spectroscopy cell, that is fed by a constant current
I (see 5.3). As the coil does not get hot its resistance is constant and therefore it is sufficient
to measure the voltage applied to the coil. We do know that the detuning is proportional to
the magnetic field which is proportional to the current I. Therefore it is easy to stretch the
x-axis from voltage to detuning by a linear factor. Fig.14 shows our results.

In fig.14 one can clearly see that there is a domain where the biggest number of atoms is
beeing trapped. Of course this is also reflected in the loss and loading rates. For the errors
we used the same estimates as before. This result can also be understood quite simply: If the
detuning is low or high the laser is resonant on too cold or too hot atoms with respect to their



6 Experimental Results – 14 –

distribution in temperature. So we should get a maximum number of atoms when the detuning
is optimal with respect to the atoms in the chamber (see fig. 14).
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Figure 14: number of atoms N , loading rate γ and loss rate β versus detuning of the cooling
laser

In all our further measurements we used a detuning of Udetuning ≈ 0.7V and a magnetic field
current of Imag = 8..9 A.

We also tried to measure the conversion factor from the detuning voltage Udetuning to fre-
quency shift ∆ν. To do this we measured the shift of one hyperfine line while changing Udetuning,
using an oscilloscope. We did two series of measurements and got two different slopes for the
linear fits. We could not explain this effect and did not have time to do more measurements,
so we assumed that our calibration factor lies somewhere in between. Fig.15 shows our results.
When assuming a slope halfway between the two measurements and a typical detuning voltage
of Udetuning = 0.7 V we get a detuning in frequency of ∆ν = (137± 7) MHz.
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Figure 15: calibration of detuning versus detuning voltage

6.4 Temperature Measurements

6.4.1 Release and Recapture and a Naive Model

To get an estimate for the temperature of the trapped atoms, we used the so called release and
recapture method. When the MOT is fully loaded one disrupts the laser for a short period of
time (release time ∆t ≈ 8..50 ms). If this happens the atoms do no longer see the trap, so the
cloud will expand ballistically. When the trap is back, only a fraction N1/N0 of the atomic
cloud is recaptured.

If we assume that the velocities of the atoms are distributed according to a Maxwell-
Boltzmann distribution, we can use this fraction to calculate the temperature. A naive model
assumes that the atomic cloud’s density is uniform over a sphere with radius σ0. If the atoms

move with the most probable velocity vp(T ) =
√

2kBT
m

from the Maxwell-Boltzmann distribu-

tion, the radius of our sphere would increase with this velocity. So σ1 = σ0 + vp ·∆t. From this
one can get an expression for the temperature T and the ratio N1/N0:

T =
m

2kB

·

[
σ0

∆t
·

(
3

√
N0

N1

− 1

)]2

⇔ N1

N0

=

(
1 +

∆T

σ0

·
√

2kBT

m

)−3

(21)

Using this formula we estimated a temperature of about T = (613 ± 394) µK (Udetuning =
0.7 V, Imagn = 8.6 A). The error is estimated by the standard deviation of about 12 measure-
ments, T is their mean value. The Doppler limits for Rb is TDoppler ≈ 140 µK. As the MOT
in this lab is rather simple and does nut utilize sofisticated cooling methods the calculated
temperature seems much too low.

6.4.2 Gaussian Model

We tried to construct a second model that should give estimates that are more realistic.
To do this we assumes that the atoms have a Gaussian distribution in space. This is a better
estimate, as an ideally harmonic potential would lead to such a distribution. If n(~x) is the
particle density one would get the number of atoms by integrating over n:

Ntrap =

∫∫∫
Vtrap

n(~x)d3~x with: n(~x; σ) = n0 ·
1√

(2πσ)3
· exp

{
− ~x2

2σ2

}

We can then assume that the radius that is defined by the standard deviation σ of the Gaussian
distribution increases with velocity vp, as above, so σ(t = ∆t) = σ(t = 0) + vp · ∆t. We can
then calculate the fraction N1/N0 of atoms that are still inside the trap after the release time
∆t:
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N1

N0

(∆t, T ) =

∫ σ0

0
n(~x; σ(T )) d3~x∫ σ0

0
n(~x; σ0) d3~x

(22)

The integration can be done

N1

N0 gaussian method
naive method
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Figure 16: comparison between the results of a naive
method, the Gaussian method for ∆t = 10 ms

numerically, using Mathemat-
ica. Fig.16 shows the fraction
N1/N0, in dependence of the tem-
perature T for the naive and
the Gaussian model.

For this plot we formulated
the naive method from 6.4.1 in
terms of integrals over propa-
bility distributions. We then
get a distribution of the form:

n(~x; σ) = n0·

{
3

4πa3 |~x| ≤ a

0 |~x| > a
, with: a =

√
5

3
·σ

where a is the width of a uniform distribution with standard-deviation σ which models the
atomic cloud. To compare these models we need to compare distributions with equal standard
deviations.
6.4.3 Simulational Approach

There are still two important approximations in this Gaussian model, that do not have to be
true. On the one hand we assume that the standard deviation (i.e. the typical radius of the
trap) increases with vp(T ). On the other hand this model neglects the gravitation. For the
latter case we can make a short estimation. According to the theorem of centre of mass the
cloud will fall down like a single particle that lies in it’s centre of mass. Within a release time
∆t the centre of mass moves then (g = 9.81 m

s2
):

∆x =
1

2
g ·∆t2 ≈

{
0.5 mm for ∆t = 10 ms

2 mm for ∆t = 20 ms

As this length is in the same order of magnitude as the diameter of the atomic cloud it may
not be neglected, as it leads to a measurable loss during the experiment. To find a model that
accounts for this also, we wrote a computer program, that simulates the expansion of the cloud.
For this simulation we assume that the atoms have a Gaussian distribution in space with the
same size in all directions (i.e. a spherical ball). The absolute values of the velocities were
distributed according to the Maxwell-Boltzman distribution and their directions are uniformly
distributed in space. We then let the cloud expand, i.e. we calculate:

~xi(∆t) = ~xi + ~vi ·∆t− 1

2

(
0
0
g

)
·∆t2. (23)

The third part of (23) calculates the effect of gravity in z-direction. Before and after this
expansion step, we count all atoms that satisfy |~xi| ≤ σ0. From the two counting steps we can
compute N1/N0. As we start with randomly distributed atoms. Listing 1 summarises these
steps.

6.4.4 Comparison of the models

Fig.17 shows a comparison between all three methods. As one can see the curves have in
about the same shape, but they predict very different temperatures. N1/N0 = 20% is a typical
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Algorithm 1 ballistic expansion of atomic cloud

for all Tmin ≤ T ≤ Tmax do
create Nstart randomly distributed atoms
N0 ← (number of atoms i with |~xi| ≤ σ0) . count atoms in trap
for all atoms i do

~xi(∆t) = ~xi + ~vi ·∆t− 1
2

(
0
0
g

)
·∆t2 . propagate all atoms

end for
N1 ← (number of atoms i with |~xi| ≤ σ0) . count atoms in trap
output N1/N0

end for

loss rate for the parameters in this simulation (∆t = 10 ms), which was extracted from the
experiment. With this loss rate we would predict these temperatures:

Tnaive = 530 µK; Tgauss = 4 mK; Tsimulation = 2.95 mK

For small release times gravity does not have a major effect on the value of N1/N0. If the
release time is longer ∆t ≈ 20ms one can observe a slightly smaller values for N1/N0 (∆N/N ≈
0.5..1%), if the temperature is low. For higher temperatures the velocity of the atoms is much
larger than the additional velocity by gravitational acceleration and the effect can again be
neglected. For the range of N1/N0 in our experiment the gaussian model and the simulation
give temperatures that are in about same order of magnitude whereas the naive model gives
temperatures that are about one order of magnitude lower.

Without a further temperature measurement using another, independent method (e.g. ob-
serve expansion with a CCD camera) we cannot determine which model is valid for our ex-
periment, but we believe that the naive model is too unrealistic to give good results. We also
do not completely understand the results of our simulation, especially the behaviour for higher
temperatures.
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Figure 17: comparison between the naive model, the Gaussian model and our simulation. (pa-
rameters: ∆t = 10 ms; Nstart = 500000; σ0 = 3.5 mm)



References – 18 –

7 Appendix

7.1 physical constants and data

Boltzman-constant: kB = 1.3807 · 1023 J/K

mass of 85Rb: mRb85 = 85 g/mol
6.022·1023 mol−1 = 1.411 · 10−25 kg

mass of 87Rb: mRb87 = 87 g/mol
6.022·1023 mol−1 = 1.445 · 10−25 kg

central wavelength of Rb D2-line: λD2 = 780.027 nm

decay rate of the excited Rb-D2 state: ΓD2 = 3.77 · 107 s−1
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Figure 18: part of the theoretical hyperfine spectrum of Rb D2-line
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