F20: Magneto-Optische Falle

Martin Horbanski, Jan Krieger Betreuer: Dr. Alois Mair

- Motivation
- Theorie
 - Kühlen mit Laserlicht
 - Fangen der Atome
 - Rubidium
 - Dopplerfreie Spektroskopie
- Experiment
 - Aufbau des Experiments
 - Dopplerfreie Spektroskopie
 - Anzahl der Atome
 - Temperatur der Atome

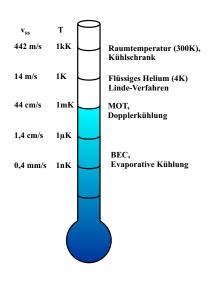
Motivation

- Theorie
 - Kühlen mit Laserlicht
 - Fangen der Atome
 - Rubidium
 - Dopplerfreie Spektroskopie
- Experiment
 - Aufbau des Experiments
 - Dopplerfreie Spektroskopie
 - Anzahl der Atome
 - Temperatur der Atome

- Motivation
- Theorie
 - Kühlen mit Laserlicht
 - Fangen der Atome
 - Rubidium
 - Dopplerfreie Spektroskopie
- Experiment
 - Aufbau des Experiments
 - Dopplerfreie Spektroskopie
 - Anzahl der Atome
 - Temperatur der Atome

- Motivation
- Theorie
 - Kühlen mit Laserlicht
 - Fangen der Atome
 - Rubidium
 - Dopplerfreie Spektroskopie
- Experiment
 - Aufbau des Experiments
 - Dopplerfreie Spektroskopie
 - Anzahl der Atome
 - Temperatur der Atome

Motivation



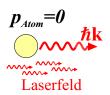
- Kühlen und Fangen neutraler Atome
- Heute Standardquelle f
 ür Kalte Atome
 - Vorstufe für BEC (Bose-Einstein-Kondensat)
 - für Atomuhren
 - für Quantencomputer

Kühlen mit Laserlicht

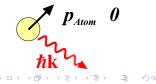
Reemissionsmechanismen

- Kühlen durch Abbremsen
- Dissipative Kraft nötig

stimulierte Emission:



spontane Emission:

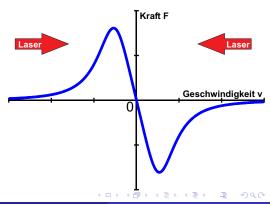


Kühlen mit Laserlicht Dissipative Kraft

- nur Photonenabsorption entgegen der Bewegungsrichtung
- ⇒ nutze Doppler-Effekt (Geschwindigkeitsabhängig)

$$\omega_{Laser} = \omega_{transition} - \vec{k} \cdot \vec{v}$$

- ⇒ Rotverschiebung des Lasers
- ⇒ insgesamt ergibt sich bremsende Kraft



Kühlen mit Laserlicht

Grenzen der Dopplerkühlung

- Impulsübertrag durch spontane Emission:
 diskret und Richtung ist zufällig!
 ⇒ Atom führt im Impulsraum einen Random Walk aus.
- Doppler Limit (niedrigste erreichbare Temperatur):
 Kühlrate = Heizrate

$$T_{Doppler} = rac{\hbar\Gamma}{2k_B} \simeq 140~\mu\mathrm{K}$$

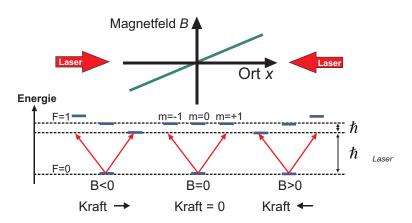
Fangen der Atome

- Bis jetzt: Atome werden gekühlt ⇒ fangen im Impulsraum
- ABER: Atome können aus der Falle diffundieren.
- JETZT: Fangen im Ortsraum

Zusätzliche ortsabhängige Kraft, die Atome im Zentrum der MOT fixiert

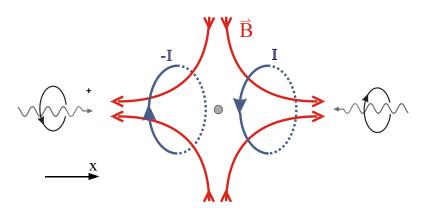
Fangen der Atome Der Zeemann-Effekt

Magnetfeld spaltet Energieniveaus auf:



Fangen der Atome

Anordnung der Laser und Spulen für 1-dimensionale MOT



- σ^{\pm} : Helizitäten
- Anti-Helmholtz-Konfiguration

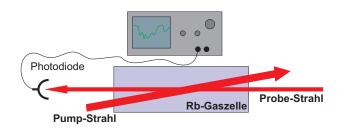
2. Teil: Experiment

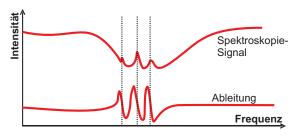
- Dopplerfreie Spektroskopie
- Aufbau des Experiments
- Anzahl der Atome
- Temperatur der Atome

Dopplerfreie Sättigungsspektroskopie Motivation

- Laser-Lock auf bestimmte Feinstrukturlinien nötig (auf einige MHz genau, Laserfrequenz im THz-Bereich)
- Bei Raumtemperatur dominiert die Doppler-Verbreiterung der Linien:
 - $\Delta \nu_{\text{Doppler}} = 500 \text{ MHz}$
 - natürliche Linienbreite: $\Delta \nu_{\mathsf{natur}} = \frac{\Gamma}{2\pi} \approx 6 \ \mathrm{MHz}$
- ⇒ hochauflösende, Doppler-freie Spektroskopie nötig

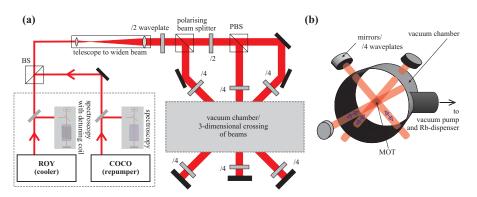
Dopplerfreie Sättigungsspektroskopie Versuchsaufbau



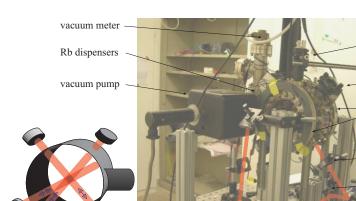


Aufbau des Experiments

- Spektroskopie zur Stabilisierung der Laserwellenlänge auf einen atomaren Übergang
- Cooler und Repumper in einem Strahl kombiniert
- \bullet Vakuumkammer (5 \cdot 10⁻⁹ mbar) wird beständig gepumpt



Aufbau des Experiments



photodiode to observe fluorescent light from MOT

mirror and /4 waveplate

-anti-Helmholtz coils

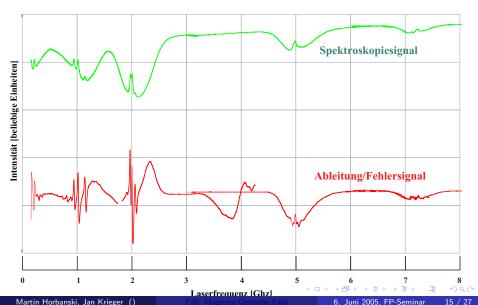
/4 waveplate

mirrors to align beams in chamber

entering laser beams

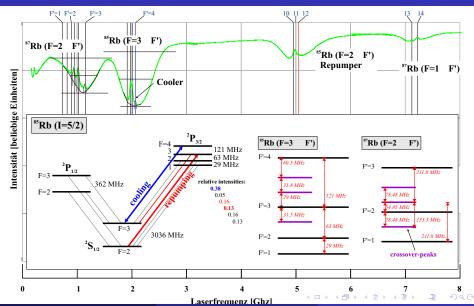
Doppler-freie Spektroskopie

Ergebnisse: gemessenes Spektrum



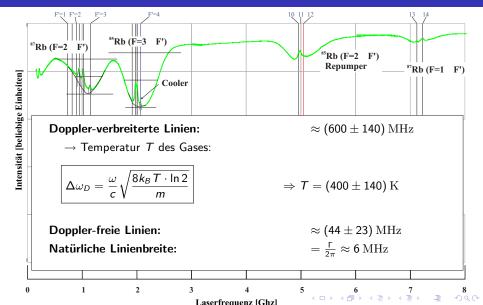
Doppler-freie Spektroskopie

Ergebnisse: gemessenes Spektrum

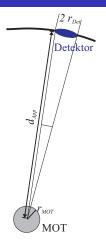


Doppler-freie Spektroskopie

Ergebnisse: Linienbreiten



Atome fangen

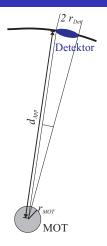


- N Atome in der Falle
- in jeder Lebenszeit $\tau=2\pi/\Gamma$ des Übergangs wird je ein Photon $h\nu$ von jedem zweiten Atom emittiert
- ullet insgesamt emittierte Leistung: $P_{
 m all}=rac{N\cdot h
 u}{2 au}$
- detektierte Leistung: $P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot rac{A_{\mathsf{Detektor}}}{A_{\mathsf{gesamt}}}$

$$P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot \frac{4\pi \cdot r_{\mathsf{Det}}^2}{\pi \cdot r_{\mathsf{App}}^2}$$

Atomzahl in MOT:

$$N = \frac{P_{\text{Det}} \cdot \tau}{h\nu} \cdot \frac{2 \cdot r_{App}^2}{r_{\text{Det}}^2}$$

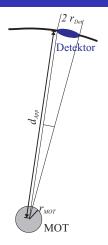


- N Atome in der Falle
- in jeder Lebenszeit $\tau=2\pi/\Gamma$ des Übergangs wird je ein Photon $h\nu$ von jedem zweiten Atom emittiert
- insgesamt emittierte Leistung: $P_{\mathsf{all}} = \frac{\textit{N} \cdot \textit{h} \nu}{2\tau}$
- detektierte Leistung: $P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot \frac{A_{\mathsf{Detektor}}}{A_{\mathsf{gesamt}}}$

$$P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot \frac{4\pi \cdot r_{\mathsf{Det}}^2}{\pi \cdot r_{\mathsf{App}}^2}$$

• Atomzahl in MOT:

$$N = \frac{P_{\text{Det}} \cdot \tau}{h\nu} \cdot \frac{2 \cdot r_{App}^2}{r_{\text{Det}}^2}$$

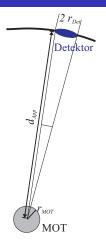


- N Atome in der Falle
- in jeder Lebenszeit $\tau=2\pi/\Gamma$ des Übergangs wird je ein Photon $h\nu$ von jedem zweiten Atom emittiert
- insgesamt emittierte Leistung: $P_{\mathsf{all}} = \frac{\textit{N} \cdot \textit{h} \textit{v}}{2\tau}$
- ullet detektierte Leistung: $P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot rac{A_{\mathsf{Detektor}}}{A_{\mathsf{gesamt}}}$

$$P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot \frac{4\pi \cdot r_{\mathsf{Det}}^2}{\pi \cdot r_{\mathsf{App}}^2}$$

• Atomzahl in MOT:

$$N = \frac{P_{\text{Det}} \cdot \tau}{h\nu} \cdot \frac{2 \cdot r_{App}^2}{r_{\text{Det}}^2}$$



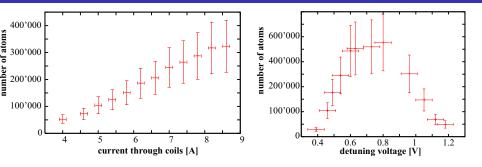
- N Atome in der Falle
- in jeder Lebenszeit $\tau=2\pi/\Gamma$ des Übergangs wird je ein Photon $h\nu$ von jedem zweiten Atom emittiert
- insgesamt emittierte Leistung: $P_{\mathsf{all}} = \frac{\textit{N} \cdot \textit{h} \textit{v}}{2\tau}$
- ullet detektierte Leistung: $P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot rac{A_{\mathsf{Detektor}}}{A_{\mathsf{gesamt}}}$

$$P_{\mathsf{Det}} = P_{\mathsf{all}} \cdot \frac{4\pi \cdot r_{\mathsf{Det}}^2}{\pi \cdot r_{\mathsf{App}}^2}$$

• Atomzahl in MOT:

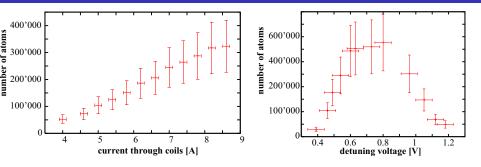
$$N = rac{P_{ extsf{Det}} \cdot au}{h
u} \cdot rac{2 \cdot r_{App}^2}{r_{ extsf{Det}}^2}$$

Anzahl der Atome Ergebnisse



- **Strom** I_{Helmholtz} bestimmt Potentialtiefe ⇒ je tiefer das Potential, desto mehr Atome
- niedriges Detuning: resonant auf zu kalte Atome hohes Detuning: resonant auf zu heiße Atome
 - ⇒ max. Anzahl an Atomen, wenn Detuning optimal auf Atome in Apparatur

Anzahl der Atome Ergebnisse



- **Strom** I_{Helmholtz} bestimmt Potentialtiefe ⇒ je tiefer das Potential, desto mehr Atome
- niedriges Detuning: resonant auf zu kalte Atome
 hohes Detuning: resonant auf zu heiße Atome
 - ⇒ max. Anzahl an Atomen, wenn Detuning optimal auf Atome in Apparatur

Laderate

Modellierung und Messung

Differentialgleichung:

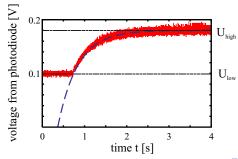
$$\frac{dN}{dt} = \gamma - \beta \cdot N$$

Lösung:

$$N(t) = N_0 \cdot \left(1 - e^{-t/\tau}\right)$$

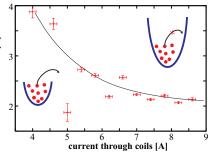
$$\mathsf{mit}\ \tau = \tfrac{1}{\beta}\ \mathsf{und}\ \gamma = \mathit{N}_0 \cdot \beta = \tfrac{\mathit{N}_0}{\tau}$$

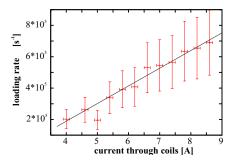
Ladevorgang kann direkt gemessen werden



Laderate

Messergebnisse: Magnetfeld

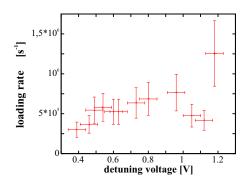




- Verlustrate β :
 - niedriges Potential: Atome können nach Stoß das Potential verlassen
 - großes Potential: kin. Energie nach Stoß reicht nicht mehr zum Verlassen
 - es bleibt ein konstanter Verlust an Teilchen
- Laderate γ :
 - ullet höheres Potential \Rightarrow mehr Geschwindigkeitsklassen fangbar

Laderate

Messergebnisse: Detuning



- es gibt ein optimales Detuning (Plateau):
 - Laser nahe bei Resonanz: wenige Atome mit richtiger Geschwindigkeit
 - Laser entfernt von Resonanz: langsame Atome sehen Laser nicht mehr

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- ⇒ "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = \frac{4\pi}{3} (r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- \Rightarrow "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = \frac{4\pi}{3} (r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- \Rightarrow "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = \frac{4\pi}{3}(r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- \Rightarrow "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = {4\pi\over 3} (r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- ⇒ "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = \frac{4\pi}{3} (r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

- MOT = Atomwolke mit Eigenschaften:
 - gleichverteilte Positionen im Raum (Kugel mit konstanter Anzahldichte)
 - alle Atome haben wahrscheinlichste Geschwindigkeit aus Boltzmann-Verteilung: $v_w(T) = \sqrt{\frac{2k_BT}{m}}$
- ⇒ "Release and Recapture"-Methode
 - Anfangszustand $n_0 = \frac{N_0}{V_0}$
 - unterbreche Laser für Zeit Δt (keine Falle)
 - bestimme das Verhältnis $\frac{N_1}{N_0}$ der Atome, die nach Δt noch in der Falle sind (messbar)
 - Fallenradius dehnt sich mit v_w aus, also $V_1 = \frac{4\pi}{3} (r_0 + v_w \cdot \Delta t)^3$
 - Endzustand: $n_1 = \frac{N_0}{V_1}$, $\Rightarrow N_1 = n_1 \cdot V_0 = N_0 \cdot \frac{V_0}{V_1}$
 - Daraus:

$$T = \frac{m}{2k_B} \cdot \left[\frac{r_0}{\Delta t} \cdot \left(\sqrt[3]{\frac{N_0}{N_1}} - 1 \right) \right]^2$$

Temperaturmessung Gauß-Verteilung der Orte

- Verbesserung:
 - Atome sind im Raum Gauß-verteilt (ergibt sich theoretisch für harmonische Potential):

$$n(\vec{x}, \sigma) = n_0 \cdot \frac{1}{\sqrt{(2\pi\sigma)^3}} \cdot \exp\left\{-\frac{\vec{x}^2}{2\sigma^2}\right\}$$

• Standardabweichung des Verteilung dehnt sich mit v_w aus:

$$\sigma(T) = \sigma_0 + v_w(T) \cdot \Delta t$$

⇒ "Release and Recapture"-Methode wie vorher

$$\frac{N_1}{N_0}(\Delta t, T) = \frac{\int\limits_0^{\sigma_0} n(\vec{x}, \sigma(T)) d^3 \vec{x}}{\int\limits_0^{\sigma_0} n(\vec{x}, \sigma_0) d^3 \vec{x}}$$

Temperaturmessung Gauß-Verteilung der Orte

- Verbesserung:
 - Atome sind im Raum Gauß-verteilt (ergibt sich theoretisch für harmonische Potential):

$$n(\vec{x}, \sigma) = n_0 \cdot \frac{1}{\sqrt{(2\pi\sigma)^3}} \cdot \exp\left\{-\frac{\vec{x}^2}{2\sigma^2}\right\}$$

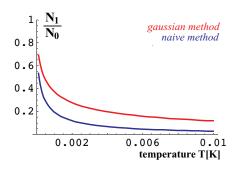
• Standardabweichung des Verteilung dehnt sich mit v_w aus:

$$\sigma(T) = \sigma_0 + v_w(T) \cdot \Delta t$$

⇒ "Release and Recapture"-Methode wie vorher

$$\boxed{\frac{N_1}{N_0}(\Delta t, T) = \frac{\int\limits_0^{\sigma_0} n(\vec{x}, \sigma(T)) \ d^3\vec{x}}{\int\limits_0^{\sigma_0} n(\vec{x}, \sigma_0) \ d^3\vec{x}}}$$

Temperaturmessung Vergleich



- aus naivem Modell ergibt sich bei Berücksichtigung aller unserer Messungen: $T = (613 \pm 394) \, \mu \text{K}$ $(U_{\text{detuning}} = 0.7 \, \text{V}, I_{\text{magn}} = 8.6 \, \text{A})$
- gemessene Temperaturen (Fehler jeweils mind. 50%, Werte für $N_1/N_0=0.3$ und $\Delta t=10~{\rm ms}$):

$$T_{\mathsf{naive}} = 500 \ \mu \mathrm{K}; \qquad \qquad T_{\mathsf{gauss}} = 1.7 \ \mathrm{mK};$$

Literatur

Demtröder, Wolfgang (2002): Experimentalphysik 3. Atome, Moleküle und Festkörper, 2. Auflage, New York - Berlin - Heidelberg: Springer Verlag.

Haken, Herrman Wolf, Hans Christoph: "Atom- und Quantenphysik", 7. Auflage, Berlin - Heidelberg - New York: Springer Verlag.

Kemmann, Mark (2001): Laserinduzierte und spontane Molekülbildung in einer magneto-optischen Atomfalle. Albert-Ludwigs-Universität Freiburg im Breisgau: diploma thesis. [http://frhewww.physik.uni-freiburg.de/photoa/dipl.pdf]

Versuchsanleitung F20, Magnetooptische Falle

Phllips, W.D.: "Laser cooling and trapping of neutral atoms", in Laser Manipulation of Atoms and Ions, Proc. Enrico Fermi Summer School, Course CXVIII, Varenna, Italy, July, 1991, edited by E. Arimondo, W.D. Phillips, and F. Strumia (North-Holland, Amsterdam, 1992)

Steck, Daniel (2005): Alkali D Line Data. accessed: 20.04.2005 (URL: http://george.ph.utexas.edu/~dsteck/alkalidata/)

Stuhler, Jürgen (2001): Kontinuierliches Laden einer Magnetfalle mit lasergekühlten Chromatomen. univerity of Konstanz: PhD thesis.

[http://www.ub.uni-konstanz.de/v13/volltexte/2001/726//pdf/stuhler.pdf]